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1
HIGH-PERFORMANCE ECC DECODER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/920,140, filed Jun. 18, 2013, which is a continuation
of' U.S. patent application Ser. No. 13/590,565, filed Aug. 21,
2012, which is a continuation of U.S. patent application Ser.
No. 12/419,304, filed Apr. 7, 2009, which claims the benefit
of U.S. Provisional Patent Application No. 61/043,734, filed
Apr. 10, 2008, U.S. Provisional Patent Application No.
61/043,736, filed Apr. 10, 2008, U.S. Provisional Patent
Application No. 61/061,685, filed Jun. 16, 2008, and U.S.
Provisional Patent Application No. 61/105,454, filed Oct. 15,
2008. The disclosures of all these related applications are
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to Error Correction
Coding (ECC), and particularly to methods and systems for
high-performance ECC decoding.

BACKGROUND OF THE INVENTION

Error Correction Codes (ECC) are used in a variety of
applications, such as in various digital communication and
data storage applications. Some ECC decoders apply a mul-
tistage process, which decodes ECC code words by calculat-
ing syndromes of the code words, and using the syndromes to
generate Error Locator Polynomials (ELPs) whose roots indi-
cate the error locations in the code words, finding the ELP
roots and correcting the errors. Some ECC types that are
commonly decoded using such a process comprise, for
example, Bose-Chaudhuri-Hocquenghem (BCH) codes and
Reed-Solomon (RS) codes.

Various schemes for generating EL.Ps from syndromes are
known in the art. Some well-known schemes comprise, for
example, the Berlekamp-Massey algorithm, the Euclidean
algorithm and the Peterson Gorenstein Zierler algorithm.
Examples of methods for determining ELPs are described, for
example, by Lin and Costello in “Error Control Coding Fun-
damentals,” Prentice Hall, second edition, 2004, chapter 6,
pages 209-215 and chapter 7, pages 241-255, and by Blahut in
“Algebraic Codes for Data Transmission,” Cambridge Uni-
versity Press, 2004, chapter 6, pages 131-166 and chapter 7,
pages 179-190 and 217-223, which are incorporated herein
by reference.

A method for finding ELP roots is described by Chien in
“Cyclic Decoding Procedure for the Bose-Chaudhuri-Hoc-
quenghem Codes,” IEEE Transactions on Information
Theory, vol. IT-10, October, 1964, pages 357-363, which is
incorporated herein by reference. This method is commonly
known as the “Chien search.”

SUMMARY OF THE INVENTION

Anembodiment of the present invention provides a method
for decoding an Error Correction Code (ECC), including:

using hardware-implemented logic, producing from a set
of bits, which represent data that has been encoded with the
ECC, multiple syndromes by applying to the bits vector
operations in a vector space, wherein each syndrome is pro-
duced by applying the vector operations to the set of bits using
a respective, different basis of the vector space;
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generating, based on the multiple syndromes, an Error
Locator Polynomial (ELP) whose roots are indicative of loca-
tions of respective errors in the set of bits; and

identifying at least some of the roots of the ELP and cor-
recting the errors indicated by the identified roots.

In some embodiments, producing the syndromes includes
selecting each basis such that the vector operations used for
producing the respective syndrome comprise a multiplication
of a sparse matrix. In an embodiment, the syndromes are
defined over a field having a primitive element, and selecting
each basis includes defining a set of basis elements as respec-
tive multiples of a given vector by different powers of the
primitive element of the field. In a disclosed embodiment, the
field includes a Galois field. In an embodiment, after produc-
ing the syndromes, the syndromes are transferred to a com-
mon basis of the vector space.

There is additionally provided, in accordance with an
embodiment of the present invention, a method for decoding
an Error Correction Code (ECC), including:

accepting coefficients of an Error Locator Polynomial
(ELP), which is defined over a field and whose roots are
indicative of locations of respective errors in a set of bits,
which represent data that has been encoded with the ECC;

evaluating the ELP on a given element of the field by
operating on the coefficients using respective hardware-
implemented serial multipliers, such that each serial multi-
plier performs a sequence of multiplication cycles and pro-
duces an interim result in each cycle;

responsively to detecting, during the sequence of the mul-
tiplication cycles, at least one interim result indicating that the
given element is not one of the roots of the ELP, terminating
the multiplication cycles before completion of the sequence;
and

when the interim results indicate that the given element is
aroot ofthe ELP, correcting at least one error indicated by the
given element.

In some embodiment, evaluating the ELP includes apply-
ing the ELP concurrently to multiple elements of the field
using respective multiple sets of the serial multipliers. In a
disclosed embodiment, terminating the multiplication cycles
includes terminating the multiplication cycles applied to the
multiple elements responsively to determining, based on the
interim results, that none of the multiple elements comprises
an ELP root. In another embodiment, terminating the multi-
plication cycles includes terminating the multiplication
cycles applied to one of the multiple elements irrespective of
termination of the multiplication cycles applied to the other
elements.

In yet another embodiment, when a rank of the ELP does
not exceed half of a number of the serial multipliers in each of
the sets of the serial multipliers, applying the ELP includes
dividing each of the sets of the serial multipliers into first and
second subsets, and applying the ELP concurrently to respec-
tive first and second elements of the field using the first and
second subsets of the serial multipliers.

There is also provided, in accordance with an embodiment
of the present invention, a method for decoding an Error
Correction Code (ECC), including:

in an ECC decoder that includes multiple logic compo-
nents that are clocked by a clock signal, accepting an Error
Locator Polynomial (ELP), which has a given rank and is
defined over a field, and whose roots are indicative of loca-
tions of respective errors in a set of bits, which represent data
that has been encoded with the ECC;

based on the rank of the ELP, selectively disabling the
clock signal to some of the logic components that are used for
computing the roots of the ELP;
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identifying the roots of the ELP using the logic compo-
nents for which the clock signal has not been disabled; and

correcting the errors indicated by the identified roots.

In some embodiments, the logic components are arranged
in a first number of subsets, each of which is assigned to
process a respective ELP coefficient, the ELP includes a
second number of ELP coefficients, smaller than the first
number, and selectively disabling the clock signal includes
providing the clock signal only to the subsets that are assigned
to process the second number of the coefficients. In a dis-
closed embodiment, a rate of the clock signal is modified
responsively to the rank of the ELP. In another embodiment,
the method includes, upon identifying a root of the ELP,
dividing the ELP by a factor that depends on the identified
root to produce a lower-rank ELP, and continuing to identify
the roots of the lower-rank ELP. In yet another embodiment,
the logic components include at least one component type
selected from a group of types consisting of multipliers and
registers.

There is further provided, in accordance with an embodi-
ment of the present invention, an Error Correction Code
(ECC) decoder, including:

a syndrome calculation unit, which is coupled to produce
from a set of bits, which represent data that has been encoded
with the ECC, multiple syndromes by applying to the bits
vector operations in a vector space, wherein each syndrome is
produced by applying the vector operations to the set of bits
using a respective, different basis of the vector space;

an Error Locator Polynomial (ELP) computation unit,
which is configured to generate, based on the multiple syn-
dromes, an ELP whose roots are indicative of locations of
respective errors in the set of bits; and

aroot search unit, which is coupled to identify at least some
of'the roots of the ELP so as to correct the errors indicated by
the identified roots.

There is additionally provided, in accordance with an
embodiment of the present invention, an Error Correction
Code (ECC) decoder, including:

root search circuitry, which includes multiple serial multi-
pliers and is configured to accept coefficients of an Error
Locator Polynomial (ELP), which is defined over a field and
whose roots are indicative of locations of respective errors in
a set of bits, which represent data that has been encoded with
the ECC, and to evaluate the ELP on a given element of the
field by operating on the coefficients using respective ones of
the serial multipliers, such that each serial multiplier per-
forms a sequence of multiplication cycles and produces an
interim result in each cycle; and

control logic, which is configured to terminate the multi-
plication cycles before completion of the sequence respon-
sively to detecting, during the sequence of the multiplication
cycles, at least one interim result indicating that the given
element is not one of the roots of the ELP, and to correct at
least one error indicated by the given element when the
interim results indicate that the given element is a root of the
ELP.

There is further provided, in accordance with an embodi-
ment of the present invention, an Error Correction Code
(ECC) decoder, including:

root search circuitry, which includes multiple logic com-
ponents that are clocked by a clock signal, and is coupled to
accept an Error Locator Polynomial (ELP), which has a given
rank and is defined over a field, and whose roots are indicative
of'locations of respective errors in a set of bits, which repre-
sent data that has been encoded with the ECC, and to identity
the roots of the ELP using the logic components so as to
correct the errors indicated by the identified roots; and
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a control unit, which is configured to selectively disable the
clock signal to some of the logic components based on the
rank of the ELP, so as to cause the root search circuitry to
identify the roots of the ELP using only the logic components
for which the clock signal has not been disabled.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
communication system that employs Error Correction Cod-
ing (ECC), in accordance with an embodiment of the present
invention;

FIG. 2 is a block diagram that schematically illustrates a
data storage system that employs ECC, in accordance with an
embodiment of the present invention;

FIG. 3 is a block diagram that schematically illustrates an
ECC decoder, in accordance with an embodiment of the
present invention;

FIG. 4 is a block diagram that schematically illustrates a
syndrome calculation unit, in accordance with an embodi-
ment of the present invention;

FIG. 5 is a flow chart that schematically illustrates a
method for syndrome calculation, in accordance with an
embodiment of the present invention;

FIG. 6 is a block diagram that schematically illustrates an
ELP root calculation unit, in accordance with an embodiment
of the present invention;

FIG. 7 is a flow chart that schematically illustrates a
method for ELP root calculation, in accordance with an
embodiment of the present invention;

FIGS. 8 and 9 are block diagrams that schematically illus-
trate ELP root calculation units, in accordance with alterna-
tive embodiments of the present invention; and

FIGS. 10 and 11 are flow charts that schematically illus-
trate methods for locating ELP roots, in accordance with
embodiments of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Power consumption and hardware size are prime consid-
erations in many ECC decoding applications. For example,
ECC decoders are commonly used in small and low-cost
communication, computing and storage devices, which oper-
ate on battery power. In these sorts of devices, it is important
to minimize the power consumption and the physical size of
the ECC decoder, in order to reduce the battery life, physical
size and cost of the device.

Embodiments of the present invention provide improved
methods and apparatus for ECC decoding. These techniques
achieve considerable reduction in hardware size and power
consumption in comparison with known solutions. The dis-
closed techniques are suitable for various kinds of ECC that
use syndromes and Error Locator Polynomials (ELPs), such
as Bose-Chaudhuri-Hocquenghem (BCH) codes and Reed-
Solomon (RS) codes.

In a typical embodiment, an ECC decoder accepts input
code words that may contain errors. The ECC decoder oper-
ates on each input code word to produce multiple syndromes
of the code word. Using the syndromes, the ECC decoder
generates an ELP, whose roots are indicative of locations of
errors in the code word. The ECC decoder then finds the ELP
roots, and corrects the errors indicated by the roots.
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The computation of a given syndrome can be represented
as a multiplication of a matrix by a vector in a certain vector
space. In some embodiments, the ECC decoder is designed so
that the vector operations (e.g., multiplications) associated
with the computation of each syndrome are performed using
a different basis of the vector space. Each basis is selected
such that the multiplied matrix is sparse, i.e., has only a small
number of non-zero elements. As a result, the multiplications
can be implemented using smaller-size hardware that con-
sumes less power.

Typically, the ELP is defined over a Galois Field (GF), and
the ECC decoder finds the ELP roots by evaluating the ELP
on different field elements. In some embodiments, the ECC
decoder evaluates the ELP by operating a set of serial multi-
pliers, each of which operates on a respective ELP coefficient.
Each serial multiplier operates on the respective coefficient in
a sequence of computation cycles, and produces an interim
result in each cycle. The ECC decoder monitors the interim
results during the computation sequence. If, during the
sequence, the ECC decoder detects at least one interim result
indicating that the currently-evaluated field element is not a
root of the ELP, the computation sequence is terminated
before its completion. Unlike ECC decoders that use parallel
multipliers in which the ELP is fully evaluated for each field
member, the disclosed technique terminates the evaluation
process of a given field element as soon as the element is
found not to be an ELP root. As a result, the power consump-
tion of the root search process is reduced. Moreover, since
serial multipliers are typically smaller than comparable par-
allel multipliers, the hardware size of the disclosed configu-
rations is relatively small.

The rank of a given ELP indicates the number of errors in
the corresponding code word. In the ECC decoder, the logic
that searches for ELP roots is typically dimensioned accord-
ing to the maximum error correction capability of the
decoder, i.e., the maximum specified ELP rank. In many
cases, however, the number of errors in a code word is lower
than the maximum number, and the actual ELP rank is thus
lower than the maximum specified rank.

Therefore, in some embodiments, the ECC decoder
reduces its power consumption by selectively deactivating
clock signals provided to the root search logic, based on the
actual rank of the ELP. Using this technique, only the logic
components (e.g., registers and multipliers) that actually par-
ticipate in the root search of the actual ELP are provided with
clock signals. The ECC decoder may also modify the clock
speed based on the actual ELP rank, so as to further control
the decoder’s power consumption. In some embodiments,
when a certain ELP root is found during the search process,
the decoder divides the ELP so as to factor out this root, and
continues the search with the lower-rank ELP. Using this
technique, the decoder’s power consumption decreases with
time, as additional roots are found and the ELP rank is
reduced.

Several efficient hardware configurations that implement
the disclosed techniques are described and discussed herein-
below.

System Description

Embodiments of the present invention provide improved
methods and systems for decoding Error Correction Codes
(ECC), such as Bose-Chaudhuri-Hocquenghem (BCH) or
Reed-Solomon (RS) codes. The disclosed techniques can be
used in a wide variety of systems and applications in which
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ECC is deployed, such as in various communication and data
storage systems. FIGS. 1 and 2 below illustrate two example
applications.

FIG. 1 is a block diagram that schematically illustrates a
wireless communication system 20 that employs error cor-
rection coding, in accordance with an embodiment of the
present invention. System 20 comprises a transmitter 24,
which transmits data to a receiver 28. The transmitter accepts
input data, encodes the data with a certain ECC, modulates
the encoded data in accordance with a certain modulation
scheme, converts the modulated digital signal to an analog
signal, up-converts the analog signal to a suitable Radio fre-
quency (RF), and transmits the RF signal toward the receiver
using a transmit antenna 32.

In receiver 28, a receive antenna 36 receives the RF signal
and provides it to a RF front end 40. The front end down-
converts the RF signal to baseband or to a suitable Interme-
diate Frequency (IF), and digitizes the signal with a suitable
Analog to Digital Converter (ADC—not shown in the figure).
The digitized signal carrying the ECC-encoded data is
demodulated by a modem 44, and the ECC is decoded by an
ECC decoder 48. The performance of decoder 48 is enhanced
by a processor 52, using methods that are described in detail
below. By decoding the ECC, decoder 48 reconstructs the
data that was input to transmitter 24. The reconstructed data is
provided as the receiver output.

System 20 may comprise, for example, a cellular system, a
satellite system, a point-to-point communication link, or any
other suitable communication system that employs ECC.
Although the example of FIG. 1 refers to a wireless commu-
nication system, the techniques described herein can be used
with wire-line communication systems, such as cable com-
munication systems, as well.

FIG. 2 is a block diagram that schematically illustrates a
data storage system 60 that employs error correction coding,
in accordance with an alternative embodiment of the present
invention. System 60 comprises a memory controller 64,
which stores data in a memory device 68. The memory device
comprises an array 72 comprising multiple memory cells 76.
Array 72 may comprise any suitable type of volatile or non-
volatile memory, such as, for example, Random Access
Memory (RAM) or Flash memory. Alternatively, device 68
may comprise a magnetic storage device such as a Hard Disk
Drive (HDD), or any other suitable storage medium. System
60 can be used in various host systems and devices, such as in
computing devices, cellular phones or other communication
terminals, removable memory modules (“disk-on-key”
devices), Solid State Disks (SSD), digital cameras, music and
other media players and/or any other system or device in
which data is stored and retrieved.

Memory device 68 comprises a Read/Write (R/W) unit 80,
which writes data values into memory cells 76 and reads data
values from the memory cells. Memory controller 64 com-
prises an ECC unit 84, which encodes the data for storage
with a certain ECC, and decodes the ECC of data that is
retrieved from the memory cells. The performance of unit 84
in decoding the ECC is enhanced by a processor 88, using
methods that are described in detail below. The ECC used in
systems 20 and 60 may comprise, for example, a suitable
BCH or RS code, as well as various other types of ECC.

Processors 52 and 88, ECC decoder 48 and ECC unit 84
can be implemented in software, in hardware or using a com-
bination of hardware and software elements. In some embodi-
ments, processors 52 and 88 comprise general-purpose pro-
cessors, which are programmed in software to carry out the
functions described herein. The software may be downloaded
to the processors in electronic form, over a network, for
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example, or it may, alternatively or additionally, be provided
and/or stored on tangible media, such as magnetic, optical, or
electronic memory.

The ECC decoding schemes described herein can be used
in communication systems such as system 20, as well as in
data storage systems such as system 60. The description that
follows applies to both communication applications and to
storage applications, and refers generally to an ECC decoder
and a processor. Any reference to the ECC decoder applies to
decoder 48 of system 20, as well as to the decoder function-
ality of unit 84 in system 60. Any reference to the processor
applies to processor 52 of system 20, as well as to processor
88 in system 60. Alternatively, the methods described herein
can be carried out by any suitable element in any suitable
system that involves ECC decoding.

FIG. 3 is a block diagram that schematically illustrates an
ECC decoder 90, in accordance with an embodiment of the
present invention. ECC decoder 90 accepts ECC code words,
which may contain errors. In other words, the input code
words may not always comprise valid code words of the ECC.
The ECC decoder decodes the input code words while
attempting to correct these errors, so as to reconstruct the data
conveyed in the code words. In a typical implementation,
each code word comprises on the order of several hundred to
several thousand bits, although any other suitable code word
size can be used.

Decoder 90 comprises a syndrome calculation unit 94,
which calculates a syndrome for each input code word. The
syndrome is typically defined as Hy=S, wherein H denotes
the parity check matrix of the ECC, y denotes an input code
word and S denotes a vector of T syndromes of code word y,
denoted S, . .. S;. T denotes the maximum number of errors
that the ECC is able to correct per code word. When input
code word y contains no errors (i.e., when y is a valid code
word), Hy=0.

When the ECC is defined over a certain finite Galois Field
(GF) having a primitive field element (also referred to as a
field-generating element) ., the k” syndrome S, can typically
bewrittenas S,=%,_,"'b,0 (or as S,=%,_," ‘b0’ ' if the
bit order is reversed), wherein b, denote the bits of the input
code word. Fora BCH code, coefficients b, are elements of the
field GF(p), and each syndrome S, is an element of the field
GF(p™). For a Reed-Solomon code, both coefficients b, and
the syndromes S, are elements of the field GF(p™). The
description that follows refers mainly to codes defined over
GF(2™), although the methods and systems described herein
are applicable to codes defined over any other suitable field.
In a typical implementation, m=4 (2"=16), although any
other suitable value of m can also be used. Unit 94 typically
computes and outputs a set of T syndromes for each input
code word.

(The description given herein refers mainly to BCH and RS
codes, although it is applicable to various other codes that are
defined by multiples of a given polynomial. In general, the
syndromes are produced by applying the roots of this poly-
nomial to the received code word.)

The syndromes output by unit 94 are processed by an Error
Locator Polynomial (ELP) computation unit 98. For a given
set of T syndromes corresponding to a given code word, unit
98 determines an ELP defined over GF(2™) whose roots are
indicative of the error locations in the given code word. The
ELP can be written as ELP(X)=1+0,X+0,X"+ . . . +(xjxj ,
wherein j denotes the rank of'the ELP, j<T. Unit 98 may apply
any suitable method in order to compute the ELP for a given
code word, such as, for example, the Berlekamp-Massey
method, the Euclidean method or the Peterson Gorenstein
Zierler method, cited above.
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Unit 98 provides the ELPs to an ELP root search unit 102.
Unit 102 determines the roots of each ELP, i.e., the elements
x of GF(2™) for which ELP(x)=0. For a given code word, the
ELP roots are indicative of the locations of the errors within
the code word. ECC decoder 90 then corrects the errors at the
identified locations. For a BCH code, the ELP roots identify
the erroneous bits in the code word, and the decoder corrects
the errors by reversing the values of the identified bits. InaRS
code, on the other hand, the ELP roots indicate the erroneous
symbols in the code words. In this case, decoder 90 deter-
mines the error values in addition to the error locations in
order to correct the errors. The correction functionality can be
carried out either by unit 102 or by other circuitry (not shown
in the figure) in decoder 90.

Typically, units 94, 98 and 102 are implemented in hard-
ware, such as using one or more Application-Specific Inte-
grated Circuits (ASICs), Field-Programmable gate Arrays
(FPGAs) and/or discrete components. Some or all of the
decoder functions may alternatively be implemented in soft-
ware, or using a combination of software and hardware ele-
ments. An efficient configuration for implementing unit 94 is
described in FIGS. 4 and 5 below. Several efficient schemes
for locating ELP roots are described in FIGS. 6-11 below.

Efficient Syndrome Calculation

As noted above, a syndrome S, can be expressed as
S,=2,_,"'b,a™, wherein b, denote the bits of the input code
word and a denotes o primitive element of the Galois field.
The syndrome can be calculated bit-by-bit by calculating
S, M=8 /o +b,. A more efficient calculation processes a
group of r bits at a time by calculating

1
SpT = Sok + Z L

=0

FIG. 4 is a block diagram that schematically illustrates the
internal structure of syndrome calculation unit 94, in accor-
dance with an embodiment of the present invention. In the
present example, unit 94 comprises multiple syndrome cal-
culation modules 106 A, 106B . . . . The syndrome calculation
modules operate in parallel on a given code word, such that
each module calculates a respective syndrome of the code
word.

In each clock cycle, each syndrome calculation module
accepts r bits from the code word, and carries out the calcu-
lation of Equation [1] above. Each syndrome calculation
module in unit 94 comprises a register 110, a Galois field
multiplier 114, an adder 118 and logic 122. Consider the k™
syndrome calculation module, which calculates syndrome S,.
In a given iteration, register 110 of this syndrome calculation
module holds the previous value of the syndrome (S,’), and
multiplies this value by & to produce the first term on the
right-hand-side of Equation [1]. Logic 122 calculates the
second term (2, 'b,,,_, ). Adder 118 adds the two
terms, and stores the result (S,”*") back in register 110. At the
end of the iterative process, register 110 holds the value of
syndrome S,.

The task of multiplying S,’ by " can be represented as a
set of vector operations that implement matrix multiplication.
In this representation, the set of m powers of the field-gener-
ating element a form a basis that spans GF(2™). Thus, any
element of the GF(2™) field can be represented as 2,_,"~*d,at’,
wherein d, comprise binary bits, i.e., as an m-tuple of binary
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bits. In particular, since syndrome S, is an element in field
GF(2™), it can be represented as such an m-tuple. The task of
multiplying a Galois field element d, which is represented by
the coefficients d, .. .d,,_,, by aconstantk, comprises a linear
operation on the coefficients d,, . . . d,, ;. This task can there-
fore be carried out by a matrix multiplication in GF(2), of the
form c=k-d, such that ¢,=%, "'k, d".

In unit 94, the above-mentioned matrix multiplication is
carried out by multiplier 114 in each syndrome calculation
module. The multiplier typically comprises digital logic cir-
cuitry (e.g., multiple XOR gates or other logic), which carries
out this multiplication. The hardware complexity and power
consumption of this logic circuitry grow with the number of
non-zero elements of the matrix representing o

In some embodiments, each syndrome calculation module
reduces the complexity and power consumption of the syn-
drome calculation process by transforming the calculation to
a different vector space in which the matrix representing o
is sparse, i.e., contains a small number of non-zero elements.
When the matrix representing o” is sparse, the task of mul-
tiplying S,’ by o/ comprises a relatively small number of
logic computations. As a result, the hardware (e.g., logic
gates) carrying out this task in multipliers 114 can be reduced
in size. The power consumption of the decoder is thus
reduced, as well.

Transformation of the matrix to the desired vector space is
performed by representing the matrix by a different basis.
One possible way to transform a general matrix A into a
sparse representation is to select an arbitrary vector y, and
construct a basis of the form {y, Ay, ..., A,y, ... }. In other
words, each basis element comprises vector y, multiplied by
a different power of matrix A. The representation of matrix A
using this basis is a matrix in which (1) one row (or column)
has non-zero elements, (2) the elements in one of the off-
diagonals are equal to unity, and (3) all other elements are
zero. This scheme can be generalized in a straightforward
manner to rectangular matrices and to matrices that do not
fully span the vector space.

Using the above-described scheme, matrix o/ (which is
used by the k” syndrome calculation module in calculating
S,)) is transformed to a basis whose elements comprise an
arbitrary vector y multiplied by different powers of o*”. For
implementation reasons, vector y is typically selected as 1,
although any other vector can also be selected. When y=1, the
new basis has the form {1, &, o, o3, . . ., atm-DF,
(Typically, each syndrome is computed using a different
basis.)

The resulting matrix, after basis transformation, is an
m-by-m binary matrix having at most 2m-1 non-zero ele-
ments. The original matrix before basis transformation is
typically balanced, i.e., has approximately m*/2 non-zero
elements. Thus, the basis transformation described above
reduces the hardware size and power consumption of multi-
pliers 114 by a factor of ~m/4. Moreover, before basis trans-
formation the hardware size and power consumption are on
the order of O(m?), and the basis transformation reduces them
to an order of O(m).

When carrying the basis transformation described above,
Equation [1] above takes becomes:

= ([ek ] o [ s+ ([ [ .
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wherein [«*] is a column vector of the coefficients of oc* inthe
standard basis (i.e., before transformation).

The transformation matrix R, which transforms the new
basis to the original basis, comprises the columns of the new
basis expressed using the original basis, i.e.:

R = ([1][ oc® L 1. [ k=D ) [3]
The basis transformation is thus given by
S =4S,+Bb [4]
wherein A and B are given by:
A= R[oM [+ .. oD ) [5]
B=RY[1][o*1..0) [6]

The transformation back from the new basis to the original
basis is given by

Ski:RSki [7]

In summary, multiplier 114 of the k” syndrome calculation
module in unit 94 comprises circuitry, which multiplies S, by
o using the above-mentioned basis transformation that is
applicable for the k” syndrome S,. The multiplier may also
comprise circuitry that transforms the computed syndrome
back to the original basis, or to any other basis in which
different syndromes can compared and further processed. For
example, transformation back to the original basis can be
performed before providing the syndromes to ELP computa-
tion unit 98. Alternatively, unit 98 may consider the basis in
which each syndrome is represented when computing the
ELP. In the latter implementation, transformation to the origi-
nal basis can be omitted.

Although the description above refers to BCH codes, the
basis transformation scheme can be adapted to other cyclic
block codes that use syndromes, such as RS codes. The
above-mentioned process can be applied for any desired
value of r, i.e., for iterative processes that compute the syn-
dromes based on one or more bits per iteration. The above-
mentioned process can be applied in hardware, in software or
using a combination of hardware and software elements.

FIG. 5 is a flow chart that schematically illustrates a syn-
drome calculation method, carried out by unit 94, in accor-
dance with an embodiment of the present invention. The
method begins with syndrome calculation unit 94 accepting a
code word, at an input step 130. Each syndrome calculation
module (106A, 106B, . . . ) in unit 94 computes a respective
syndrome of the input code word, at a syndrome computation
step 138. Each syndrome computation module computes the
syndrome using the transformed basis that is applicable to
this syndrome, as described above. Typically, each syndrome
calculation module computes the syndrome in an iterative
process, which processes r bits of the code word in each
iteration (rz1). In some embodiments, although not necessar-
ily, the syndrome calculation modules transform the syn-
dromes back to the original basis, at a backward transforma-
tion step 142. Unit 94 provides the computed syndromes to
ELP root search unit 102, at an output step 146.

Efficient ELP Root Searching

As noted above, ELP root search unit 102 receives a set of
ELP coefficients for each input code word from ELP compu-
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tation unit 98. Unit 102 processes the ELP coefficients so as to
identify the roots of the ELP. As long as the number of errors
in the code word does not exceed T, the ELP roots are indica-
tive of the locations of errors in the input code word, and
therefore locating the ELP roots enables correction of the
errors. In the description that follows, the ELP is given by
ELP(X)=1+a, X+0,X + . . . +aj)(’, wherein coefficients a, . . .
a, are provided by unit 98. Unit 102 searches the GF(2™) field
in an attempt to find the field elements for which ELP(x)=0.

Evaluating ELP(x) for various field elements typically
involves multiplying the ELP coefficients by elements of the
GF(2™) field, and more specifically multiplying the ELP
coefficients by powers of the field-generating element c.
Each such multiplication multiplies a certain field element by
a certain ELP coefficient. Some known methods perform
these multiplications using parallel Galois Field (GF) multi-
pliers, such that each multiplier multiplies a certain field
element by a certain ELP coefficient in a single clock cycle.

Embodiments of the present invention that are described
below provide improved root search configurations, which
perform the above-mentioned multiplications using serial GF
multipliers. In the present context, the term “serial multiplier”
means any multiplier that multiplies a certain field element by
a certain ELP coefficient in multiple clock cycles, and outputs
one or more bits of the final product (typically one bit) in each
clock cycle. Examples of serial multipliers are described on
pages 265-267 of Blahut’s “Algebraic Codes for Data Trans-
mission,” Cambridge University Press, 2004, which is incor-
porated herein by reference. Alternatively, however, any other
suitable serial multiplier configuration can also be used.

The objective of the root search process is to find field
elements for which ELP(x)=0. Therefore, even a single non-
zero bit produced by the serial multiplier indicates that the
multiplied field element is not a root of the ELP. Thus, when
a given serial multiplier outputs a bit of the product that is
non-zero, the multiplication process can be terminated before
its completion. This scheme reduces the number of multipli-
cations performed in the root search process, since most of the
multiplication operations, which multiply field elements that
are not ELP roots, are terminated before completion. As a
result, the power consumption of the root search process is
reduced considerably. The hardware size (e.g., gate count) of
a serial multiplier is also considerably smaller than that of a
comparable parallel multiplier.

FIG. 6 is a block diagram that schematically illustrates an
ELP root calculation unit 150, in accordance with an embodi-
ment of the present invention. The configuration of unit 150
can be used to implement unit 102 in FIG. 3 above. Unit 150
comprises T+1 coefficient multiplication modules 154. The
k™ module 154 evaluates the k™ term of ELP(x), i.e., a,x%,
k=0...T-1.

Each module 154 comprises parallel multipliers 158 and
162, a register 166 and a serial multiplier 170. In the k”
module 154, parallel multiplier 158 multiplies the content of
register 166 by . Parallel multiplier 162 multiplies the
content of register 166 by ., and is therefore relatively simple
and inexpensive. The two parallel multipliers are operated
only once per each evaluated field element, as will be shown
below.

In order to evaluate a,x* in the k” module 154, register 166
is initialized with the ELP coefficient a,. Then, a sequence of
m cycles is performed, in which serial multiplier 170 multi-
plies the content of register 166 by of. The m cycles are
performed concurrently in the T+1 modules 154. At the end of
each cycle, each serial multiplier 170 produces one bit of its
final product. This bit is referred to as an interim result.
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In each cycle, a XOR unit 174 computes the Exclusive OR
(XOR) of'the T+1 interim results produced by modules 154.
Thus, ifunit 174 outputs a “1” at any time during the m-cycle
multiplication process, unit 150 may conclude that the cur-
rently-evaluated field element is not an ELP root. In such a
case, the multiplication process can be terminated, and unit
150 can proceed to evaluate the next field element.

FIG. 7 is a flow chart that schematically illustrates a
method for ELP root calculation, carried out by unit 150, in
accordance with an embodiment of the present invention.
Unit 150 scans the GF field elements (1, o, o2, o, . . .)
sequentially, in order to identify which of the field elements
are roots of the ELP.

The method begins with unit 150 initializing registers 166
with the ELP coefficients, at an initialization step 180. Unit
150 now carries out a sequence of m cycles, in which serial
multipliers 166 multiply their respective ELP coefficients by
the appropriate powers of the currently-evaluated field ele-
ment.

Unit 150 operates the serial multipliers for a single cycle, at
acycle operation step 184. At the end of'this cycle, each serial
multiplier produces a respective interim result, i.e., one bit of
the final product. Unit 174 calculates a XOR of the T+1
interim results. Unit 174 checks whether XOR result after the
current cycle is non-zero, at a non-zero checking step 188. If
the XOR operation produces a non-zero output, unit 174
terminates the m-cycle sequence and proceeds to evaluate the
next field element, at a next candidate step 192. When pro-
ceeding to the next field element, parallel processors 158 and
162 of modules 154 are operated to calculate the next power
of a.. Unit 174 thus functions as control logic, which monitors
the interim results of the serial multipliers and terminates the
multiplication sequence when appropriate.

If, on the other hand, the output of unit 174 is zero, the
m-cycle multiplication sequence continues. Unit 150 checks
whether all m cycles have been completed. If not, the method
loops back to step 184 above in order to proceed to the next
cycle in the sequence. If all m cycles have been completed,
and the output of unit 174 has been zero during the entire
sequence, unit 150 identifies the currently-evaluated field
element as a root of the ELP, at a root identification step 200.
Unit 150 may correct the error at the location indicated by the
identified root, or report the identified root or error location to
decoder 90. The method then loops back to step 192 above, in
which unit 150 proceeds to evaluate the next field element.
This process of FIG. 7 typically continues until all field ele-
ments have been evaluated or until T roots have been found.

FIG. 8 is a block diagram that schematically illustrates an
ELP root calculation unit 204, in accordance with an alterna-
tive embodiment of the present invention. In this configura-
tion, the ELP root calculation unit evaluates multiple GF field
elements concurrently. Unit 204 comprises T+1 coefficient
multiplication modules 208. In this configuration, however,
each module 208 comprises d serial multipliers 170. Each
row of serial multipliers 170 in FIG. 204 evaluates a respec-
tive field element. The outputs of the serial multipliers in a
given row are connected to a respective XOR unit 212, which
calculates the XOR ofthe T+1 interim results produced by the
serial multipliers.

In the configuration of FIG. 8, a set of d field elements are
evaluated concurrently in each m-cycle multiplication
sequence of the serial multipliers. Parallel multipliers 158 and
162 are operated only once per each set of d field elements.
Thus, the overhead of operating the parallel multipliers is
divided among d field elements, instead of a single field
element as in FIG. 6 above. Thus, the configuration of FIG. 8
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provides improved power consumption and latency in com-
parison with the configuration of FIG. 6 above.

At any time during the m-cycle multiplication sequence, if
a certain XOR unit 212 produces a non-zero output, unit 204
may conclude that the field element evaluated by the respec-
tive row of serial multipliers is not an ELP root. When a given
XOR unit 212 produces a non-zero output, unit 204 may
terminate the operation of the respective row of serial multi-
pliers in order to reduce power consumption. Alternatively,
unit 204 may wait for a situation in which all XOR units
produce non-zero outputs, and then terminate the entire
m-cycle sequence and proceed to the next set of d field ele-
ments.

Thus, units 212 function collectively as control logic,
which monitors the interim results produced by the serial
multipliers and terminates one or more of the multiplication
sequences as appropriate.

The configurations of FIGS. 6 and 8 above are example
configurations, which are chosen for the sake of conceptual
clarity. Any other suitable configuration can also be used. For
example, the field elements can be scanned in any desired
order, such as by using other primitive field elements, or by
multiplying by a~! instead of by .. As another example, the
serial multipliers in a given row of FIG. 8 can be scaled by a
constant in order to reduce gate count and power consump-
tion. Such scaling does not affect the ELP roots. Additionally
or alternatively, parallel multipliers 158 and/or 162 can be
scaled by a constant, so that registers 166 begin the m-cycle
sequence with a certain offset. Again, this scaling does not
affect the ELP roots.

In some embodiments, each row of serial multipliers 170 in
FIG. 8 can be split into two halves, and each half operated to
evaluate a separate field element. Such a configuration is
useful when the code word contains a small number of errors,
such that the actual rank of the ELP is T/2 or less. In such a
situation, unit 204 can evaluate 2d field elements concur-
rently, two field elements per row, thus reducing power con-
sumption and latency. In order to support this sort of func-
tionality, XOR unit 212 should calculate the XOR of the
interim results of each half row separately.

Reducing Power Consumption of Root Search Based
on Actual ELP Rank

In many practical cases, the actual number of errors j in a
given code word is smaller than the maximum number of
correctable errors T. In other words, the rank of the ELP may
be lower than T. In some embodiments, the ELP root search
unit modifies its operation based on the actual ELP rank, so as
to reduce power consumption.

FIG. 9 is a block diagram that schematically illustrates an
ELP root calculation unit 216, in accordance with an embodi-
ment of the present invention. The ELP coefficients are stored
in T registers 220. Unit 216 applies the ELP to the different
Galois field elements using GF multipliers 224 and registers
228. The outputs of registers 228 are combined by a GF adder
232, whose output determines whether the currently-evalu-
ated is an ELP root or not. For example, unit 216 may scan the
Galois field elements using the Chien search process, cited
above. The present example refers to m=16, although any
other suitable value of m can also be used.

Unit 216 further comprises a control unit 236, which con-
trols the different components of unit 216. In particular, con-
trolunit 236 provides clock signals to the different multipliers
and registers of unit 216. The configuration of registers and
multipliers in FIG. 9 is an example configuration. The tech-
niques described below can be applied in any other suitable
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ELP root search configuration having multipliers registers
and other logic components, such as the configurations of
FIGS. 6 and 8 above.

The power consumption of unit 216 depends primarily on
the power consumption of registers 228 and multipliers 224.
For example, the different bits of registers 228 flip their values
during operation of unit 216, and this toggling has a consid-
erable impact on power consumption. In particular, when the
registers are implemented using Complementary Metal
Oxide Semiconductor (CMOS) technology, they consume
power mainly during value transitions.

When the actual rank j of the ELP is smaller than T, the root
search can be carried out using only a subset of the T registers
and multipliers. In some embodiments, control unit 236 sup-
plies clock signals selectively to the different logic compo-
nents (e.g., multipliers 224 and registers 228), such that a
clock signal is provided only to j of the multipliers and reg-
isters. The remaining T—j multipliers and registers do not
receive clock signals, and their power consumption in mini-
mized. (A typical CMOS flip-flop circuit consumes approxi-
mately 30% of its power irrespective of whether its value flips
or not, as long as it receives a clock signal.)

FIG. 10 is a flow chart that schematically illustrates a
method for locating ELP roots, in accordance with an
embodiment of the present invention. The description that
follows focuses on the identification of ELP roots for a given
code word. The method of FIG. 10 begins with control unit
236 in root search unit 216 accepting an indication of the
actual ELP rank j, at a rank input step 240. The rank can be
accepted, for example, from an ELP computation unit that
computes the ELP coefficients (e.g., unit 98 in FIG. 3 above).

Control unit 236 checks whether the actual rank is smaller
than the maximum allowable rank T, at a rank checking step
244. If j<T, the control unit disables the clock signals to the
T—j multipliers and registers corresponding to the most sig-
nificant ELP coefficients, at a selective clock disabling step
248.

In some embodiments, the control unit can also modify the
rate of the clock signal based on the actual ELP rank (i.e.,
based on the number of active multipliers and registers), at a
clock rate setting step 252. Using this technique, the control
unit can limit the peak power consumption of unit 216. For
example, when j is high and therefore a large number of
multipliers and registers are active, control unit 236 may set a
relatively low clock rate in order to limit the peak power
consumption. When j is low, the control unit may set a higher
clock rate, since only a relatively small number of multipliers
and registers are active. Because of the different clock rates
used, code words having large numbers of errors will typi-
cally be decoded more slowly than code words having small
numbers of errors. Since code words having large numbers of
errors are relatively rare, this degradation is decoding time is
typically tolerable. In some embodiments, control unit 236
defines two or more clock rates, which correspond to different
ranges of the ELP rank j. For example, the control unit may
apply a certain fast clock rate when j<j1, divide the fast clock
by two for j1<j<j2, divide the fast clock by three when
j2<j<g3, and so on (j1<j2<j3).

Unit 216 locates the j ELP roots using the active multipliers
and registers, at a root location step 256. (If rank checking
step 244 concludes that j=T, the method jumps directly to step
256, without disabling clock signals or modifying the clock
rate.)

FIG. 11is a flow chart that schematically illustrates another
method for locating ELP roots, in accordance with an
embodiment of the present invention. In this method, when an
ELP root is identified, control unit 236 divides the ELP by a
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factor that depends on the identified root, so as to produce a
lower rank ELP. The search process continues using the lower
rank ELP. When using the method of FIG. 11, the power
consumption of unit 216 decreases over time, since the ELP
rank decreases with each additional root found. The decrease
in power consumption is particularly significant when this
method is used in combination with the techniques of FIG. 10
above.

The method of FIG. 11 begins with unit 216 searching for
the roots of'a certain ELP(X), at a root search step 260. Control
unit 236 checks whether a root has been found, at a root
checking step 264. When a root f§ is found, control unit 236
divides ELP(x) by (x-f), at a division step 268. Any suitable
polynomial division method can be used for this purpose.
Example methods are described by Blahut in “Theory and
Practice of Error Control Codes,” Addison-Wesley, 1983,
chapter 6, sections 6.1-6.3, pages 130-140, which is incorpo-
rated herein by reference. Since f§ is a root of ELP(x), the
division has a remainder of zero. The polynomial division
lowers the rank of the ELP by 1, without affecting the ELP
roots that have not yet been found.

Control unit 236 loads registers 220 with the coefficients of
the new, lower-rank ELP. The method then loops back to step
260 above, and unit 216 continue to search for additional ELP
roots of the lower-rank ELP. The process continues until all
ELP roots are found.

In some embodiments, unit 236 may end the progressive
polynomial division when the ELP rank reaches a certain
value (e.g., 1, 2 or 3). From that point, the control unit finds
the remaining ELP roots using other means, such as using
algebraic equation solving methods. This technique further
reduces the search time.

When ECC decoder 90 operates on a set of input code
words, some of these code words may contain more than T
errors per code word. The decoding of such code words will
typically fail, since the number of errors per code word
exceeds the correction capability of the code. Typically,
attempting to decode a code word having more than T errors
will produce a rank T ELP, but the root search process will
fail.

In some embodiments, decoder 90 defines a certain upper
bound T,<T, and attempts to decode only code words whose
ELP rank is no more than T,,. T, may be set, for example, to
T-1, T-2 or to any other suitable value. This technique elimi-
nates attempts to decode non-decodable code words (which
typically translate to rank T ELPs), and the unnecessary
power consumption associated with these attempts. On the
other hand, code words whose number of errors is between T,
and T will also not be decoded. In other words, the effective
correction capability of the code is reduced from T to T,,. In
most practical cases, however, such code words are relatively
rare and the resulting performance degradation is tolerable
and is well worth the reduction in power consumption.

Although the embodiments described herein mainly
address decoding of BCH and RS codes in communication
and storage applications, the methods and systems described
herein can also be used in any other suitable application.

It will thus be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed in the prior art.
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What is claimed is:

1. An memory controller, comprising:

an Error Correction Code (ECC) unit configured to:

receive data from a memory, wherein the data is encoded
with an ECC, and includes at least one code word;

calculate a syndrome for the at least one code word;

calculate an Error Locator Polynomial (ELP) dependent
upon the calculated syndrome; and

modify a frequency of a clock signal dependent upon an
actual number of errors in the at least one code word;
and

a processing unit coupled to the ECC unit, wherein the

processing unit is configured to:
receive the clock signal; and
determine roots of the ELP.

2. The memory controller of claim 1, wherein to calculate
the syndrome for the at least one code word, the ECC unit is
further configured to multiply the at least one code word by a
parity matrix.

3. The memory controller of claim 1, wherein to modify the
frequency of the clock signal, the ECC unit is further config-
ured to decrease the frequency of the clock signal responsive
to a determination that the actual number of errors in the at
least one code word is greater than a predetermined threshold
value.

4. The memory controller of claim 1, wherein to modify the
frequency of the clock signal, the ECC unit is further config-
ured to increase the frequency of the clock signal responsive
to a determination that the actual number of errors in the at
least one code word is less than a predetermined threshold
value.

5. The memory controller of claim 1, wherein to modify the
frequency of the clock signal, the ECC unit is further config-
ured to compare the actual number of errors in the at least one
code word to a maximum number of correctable errors.

6. The memory controller of claim 1, wherein to calculate
the syndrome, the ECC unit is further configured to apply
vector operations in a vector space to data bits included in the
at least one code word.

7. The memory controller of claim 6, wherein syndrome is
defined over a field, and wherein the field includes a primitive
element.

8. A method for operating a memory controller, the method
comprising:

receiving data from a memory, wherein the data is encoded

with an Error Correction Code (ECC), and wherein the
received data includes at least one code word;
calculating a syndrome for the at least one code word;
calculating an Error Locator Polynomial (ELP) dependent
upon the calculating syndrome;
modifying a clock rate of a processing unit dependent upon
an actual number of errors in the at least one code word;
and

determining, by the processing unit, roots of the ELP

dependent upon the clock signal.

9. The method of claim 8, wherein calculating the syn-
drome for the at least one code word comprising multiplying
the code word by a parity matrix.

10. The method of claim 8, wherein modifying the clock
rate of the processing unit comprised decreasing the clock
rate of the processing unit responsive to a determination that
the actual number of errors in the at least one code word is
greater than a predetermined threshold value.

11. The method of claim 8, wherein modifying the clock
rate of the processing unit comprised increasing the clock rate
of the processing unit responsive to a determination that the
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actual number of errors in the at least one code word is less
than a predetermined threshold value.

12. The method of claim 8, wherein modifying the clock
rate of the processing unit comprises comparing the actual
number of errors in the at least one code word to a maximum
number of correctable errors.

13. The method of claim 8, wherein calculating the syn-
drome comprises applying vector operations in a vector space
to data bits included in the at least one code word.

14. The method of claim 13, wherein the syndrome is
defined over a field, and wherein the field includes a primitive
element.

15. A data storage apparatus, comprising:

a memory unit; and

a controller coupled to the memory unit, wherein the con-

troller is configured to:

receive data from the memory, wherein the data is
encoded with an ECC, and includes at least one code
word;

calculate a syndrome for the at least one code word;

calculate an Error Locator Polynomial (ELP) dependent
upon the calculated syndrome; and

modify a frequency of a clock signal dependent upon an
actual number of errors in the at least one code word;
and

a processor configured to:

receive the clock signal; and
determine roots of the ELP.
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16. The data storage apparatus of claim 15, wherein to
calculate the syndrome for the at least one code word, the
controller is further configured to multiply the at least one
code word by a parity matrix.

17. The data storage apparatus of claim 15, wherein to
modify the frequency of the clock signal, the controller is
further configured to decrease the frequency of the clock
signal responsive to a determination that the actual number of
errors in the at least one code word is greater than a predeter-
mined threshold value.

18. The data storage apparatus of claim 15, wherein to
modify the frequency of the clock signal, the controller is
further configured to increase the frequency of the clock
signal responsive to a determination that the actual number of
errors in the at least one code word is less than a predeter-
mined threshold value.

19. The data storage apparatus of claim 15, wherein to
modify the frequency of the clock signal, the controller is
further configured to compare the actual number of errors in
the at least one code word to a maximum number of correct-
able errors.

20. The data storage apparatus of claim 15, wherein to
calculate the syndrome, the controller is further configured to
apply vector operations in a vector space to data bits included
in the at least one code word.
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